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Abstract—The heat transfer characteristics of microencapsulated phase change material slurry flow in
circular ducts are presented in this paper. The energy equation is formulated by taking into consideration
both the heat absorption (or release) due to the phase change process and the conductivity enhancement
induced by the motion of the particles. The heat source or heat generation function in the energy equation
is derived from solutions for freezing or melting in a sphere. The correlation for the effective conductivity
of the slurry is obtained based on available analytical and experimental results. The governing parameters
are found to be the particle concentration, a bulk Stefan number, the duct/particle radius ratio, the
particle/fluid conductivity ratio, and a modified Peclet number. For low temperature applications, it is
found that the dominant parameters are the bulk Stefan number and concentration. The numerical solutions

show that heat fluxes about 2-4 times higher than single phase flow may be achieved by a slurry system.

INTRODUCTION

MaJor factors that make phase change matenials very
attractive for thermal energy storage and thermal con-
trol are high energy storage density and small tem-
perature variation. As a result, a wide variety of appli-
cations have been suggested and implemented in
practice [1]. Recently, a new technique of utilizing
phase change materials in energy storage and thermal
contro! systems has been investigated [2—6]. In this
approach, the phase change material is micro-
encapsulated and suspended in a heat transfer fluid to
form a phase change slurry.

The concept of a phase change slurry has been
made possible by advances in  microencapsulation
technology over the past decade. Since the ratio of
surface area to volume of small particles is relatively
large, the heat transfer rate per unit volume to or from
the material in the particles is high. The slurry also
serves as both the energy storage and heat transfer
media, and the requirement of separate heat transfer
media is therefore eliminated [7]. In addition, encap-
sulating the phase change material in small capsules
is expected to eliminate any segregation during phase
change [8]. A phase change slurry also benefits from
heat transfer enhancement found in the flow of
suspensions as rcported by several investigators
[9-14].

While all the preliminary studies and experiments
indicate promising applications of the phase change
slurry as a heat transfer and storage medium, data
necessary for design is very incomplete. The lack of a
general, systematic approach in earlier studies makes
tCurrent address: Faculty of Engineering, Chulalong-
korn University, Thailand.
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it difficult to interpret or evaluate many of the results.
Furthermore, most studies have concentrated on the
materials and thermal storage aspects of phase change
slurries. As a result, the most important aspect of such
slurries, namely their heat transfer enhancing capability,
has received only limited attention [3, 9-10, 14]. In
order to address this problem, a theoretical model
describing the forced convection heat transfer with a
phase change material slurry in a circular duct flow
has been developed in this paper. Based on this model,
numerical solutions valid for low temperature appli-
cations have been obtained.

FORMULATION OF THE PROBLEM

Figure 1(a) shows a schematic diagram describing
the problem. The flow field in the duct may be divided
into two regions, a melting (or freezing) region and a
fully melted (or frozen) region. These two regions
are separated from each other by a phase change
‘interface’ which is a locus of points at which the
particles become completely melted (or frozen). The
melting (or freezing) region with the particles at
different stages of the phase change process occupies
the central portion of the flow field. The fully melted
(or frozen) region is bounded by the tube wall and the
‘interface’. The phase change material in the capsules
in this region is either solely liquid or solely solid since
the phase change process has been completed. The
following assumptions are made in formulating the
governing equations

(1) The maximum microcapsule concentration
considered in this study is limited to 0.25. The fluid
can therefore be considered as Newtonian [15-17].
Cases with higher concentrations, where non-New-
tonian effects are important, have not been con-
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NOMENCLATURE
constant, equation (9) t time
Biot number u velocity in the X-direction
specific heat V volume
volumetric concentration of suspended R coordinate in the axial direction
particles z ‘interface’ location, measured from the

particle diameter

duct diameter

velocity gradient

conductivity enhancement function,
equation (9)

heat transfer coefficient

mesh point index in the radial direction
value of index 7 on the wall

thermal conductivity

latent heat of phase change material ;
duct length

constant, equation (9)

Nusselt number

mesh point index in the axial direction
Peclet number

Prandt! number

heat flux

heat transfer rate

radius

Reynolds number

duct radial coordinate ; r;, is the interface
location in a particle

heat source or sink

Stefan number

temperature

log mean temperature difference

wall.

Greek symbols

thermal diffusivity
reciprocal of Bi
temperature
dynamic viscosity
kinematic viscosity
density.

W R D™ R

Subscripts

dimensionless variables

bulk fluid (slurry)

bulk mean values

duct

effective

suspending fluid ; final-stage melting
melting point

particles

solid-phase portion in a particle
wall

at axial position x.

=i

xgvowg ™o agao—

Superscript
rate of change with respect to time.
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FiG. 1(a). Heat transfer of phase change slurry in a duct.
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Fi1G. 1(b). Freezing in a sphere.

sidered, since neither the viscosity, nor the thermal
conductivity, can be correlated with the particle con-
centration and related parameters.

(2) The flow is assumed to be incompressible and
laminar. It is also hydrodynamically fully developed
and uniform at the melting/freezing temperature of
the phase change particles when it enters the heat
transfer section. The model developed in this paper
can also be used in case the suspension is subcooled
as it enters the duct, but the analysis has been limited
to the zero subcooling case in order to reduce the
number of parameters.

(3) The particles are rigid inert spheres with density
approximately equal to that of the suspending fluid.
Though this condition may not be achieved under all
conditions, stratification and sedimentation can be
minimized by using microcapsules of very small
diameters.

(4) The slurry is assumed to be homogeneous and
therefore has constant bulk properties, except for the
thermal conductivity which is a function of the local
shear [11-13] and varies across the flow field. This
assumption is valid when the particle-to-duct diameter
ratio is small [18, 19]. For low particle-to-duct diam-
eter ratios, radial migration effects are also negligible
[20, 21]. For suspensions of very small particles (0.1—
20 pum) which are often flocculated, the degree of
uniformity may be increased by adding a suitable
dispersing agent [22].

(5) The wall effect, which creates a particle-free
layer next to the wall, is assumed to be negligible. This
is valid for a small particle/duct diameter ratio since
the particle-free layer is approximately 0.5-1 particle
diameter [21, 23].

(6) The coating of the particles is very thin, and the
particles therefore consist entirely of the phase change
material. This is not actually achieved in practice

where the encapsulating material may be 10-20% of
the total microcapsule volume. However, in most
cases, errors can be expected to be quite small as long
as the concentration is defined based on the actual
volume of the phase change material. Any further
corrections in the bulk properties due to the encap-
sulating material should be negligible since its mass
fraction in the slurry is only of the order of 5%.

Based on the above assumptions the governing equa-
tions are :

Velocity profile

@)

Energy equation

or o oT kT
pCuze= F<k>+< 5)

of oT ouY

with the following boundary conditions:

T=T, at r=R,

for constant wall temperature (3a)
oT dw
E———kc‘w atr—Rd,x>0,
for constant wall heat flux  (3b)
cT
20 atr=0 x>0 (3¢)
or
T=T, at x=0, r <Ry (3d)
r,=R, at x=0. (3e)

The density and specific heat in this equation are those
of the slurry, and are evaluated by the weighted mean
method. The thermal conductivity is an effective value
which includes microconvection due to the eddy
motion of fluid around the particles. The heat source
function S is the result of the change of phase in the
suspended particles. These are discussed in greater
detail below.

Thermal conductivity

The thermal conductivity of static dilute suspen-
sions, Ky, can be evaluated from Maxwell’s relation
[24]

ko 2+kyfko+2e(ky/ki—1)
ke~ 24kyfki—ctkyfki—1)

C)

Because of the enhancement created by the particle/
fluid interactions, the effective conductivity of flow
slurries is higher than that predicted by equation (4).
Leal [25] studied conductivity enhancement in
dilute suspensions at very low particle Peclet numbers
and obtained the following relation, for suspensions
with equal particle and fluid conductivity :
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ke 1.5
% = 1+3.0c Pe, %)

where Pe, is the particle Peclet number

_ed

Pe .
%

P (6)
Nir and Acrivos [26] applied a similar model to dilute
suspension flow at very high particle Peclet numbers
and obtained a relation

k, ,
—~=1l+AcPe)" @)
ky
where A4 is a constant the value of which may be
determined experimentally. Sohn and Chen [13] con-
ducted experiments at moderate Peclet numbers and
proposed a correlation of the form

k\.‘

— = F(c,...)Pe} (8)
ky,

where F is an undetermined function. Based on the

results discussed above, a general correlation of the

form

ke = f = 14 BcPe; )
ks
is used in this study. Constants B and m, the values
of which depend on the particle Peclet numbers, have
been evaluated as follows. At low Peclet numbers, the
values are those given in equation (5), i.e. B = 3.0 and
m = 1.5. At high Peclet number, the value of m is
obtained from equation (7), i.e. m = 1/11. The exper-
imental results from ref. [13] are then used to evaluate
Band m at moderate Peclet numbers, which come out
as 1.8 and 0.18, respectively. In order to reduce the
wall effects, only the data of the polystyrene sus-
pensions with larger channel gap to particle diameter
ratio were used to obtain the above values. From the
intersection between the curves of low and moder-
ate Peclet numbers, the low-to-moderate transition
Peclet number was found to be approximately 0.67.
For higher particle Peclet numbers, Sohn and Chen’s
[13] data seem to show a transition at a Peclet number
of about 250. Using this transition value, B for the
high Peclet number region was found to be 3.0. The
final correlation for the entire range is shown graphi-
cally in Fig. 2.

An alternative approach to obtain the effective ther-
mal conductivity would be to use a power-law model
for the thermal conductivity as done by Sohn and
Chen [14]. The above correlation is then a special form
of the general power law model. Since the problem of
effective thermal conductivity of suspensions is still
essentially unresolved, such an approach would seem
to be more appropriate. Nevertheless, the use of an
explicit relation as above has the advantage of reduc-
ing the number of parameters related to the problem.
In addition, the actual errors caused by the use of the
above thermal conductivity relation is quite small even

in the absence of phase change as shown in a later
section. Once phase change is taken into account, any
effects are marginal, since results show that the effect
of particles on the Nusselt number is very small as
compared to thosec rclated to the phase change
phenomenon.

Heat source S

The source S represents heat released or absorbed
by the phase change process in the particles. It is
obtained from the product of the heat generation or
absorption rate per particle and the number of par-
ticles per unit volume of the slurry. Since the local
Stefan number of the phase change process involving
small spheres is generally low, the heat transfer rate
per particle is evaluated as follows:

0, = p VL = dnk (T —T)———2——  (10a)
where ¥, is the rate of change of the volume of the
solid phase in the sphere

V.= —4nr dr,/dr (10b)

and the interface location in the microcapsule, r, (Fig.
1(b)), is given by Tao’s [27] solution

f=(1—r)2+ 1 —r})(B,— /3

where R, is the particle radius, 7, the non-dimensional
time given by #(o,/(RONC,(T,,—T)/L), and B, =
k,/h,R, = 1/Bi,. The heat source term therefore
becomes

(10c)

A _ N (Tm_T) rpl
S= QN = 3ck, T P (1)

where N is the number of microcapsules per unit vol-
ume.

The heat transfer coefficient around spheres can be
evaluated from the conduction model based on the
effective thermal conductivity which includes the
effects of molecular diffusion and eddy convection
around the particles. This leads to

k. 2(1—¢)

B =k, 053 o (12
The stage of freezing of an individual particle, i.e. the
value of r,,, can be determined from a heat balance
equation given below. The left-hand side represents
the energy released by the phase change process in a
particle, and the right-hand side is the cumulative heat
transfer between that particle and the surrounding
fluid

dx
u

ek —re, = | o= [,
which can be rearranged as

s 3k, [ o ,,7‘*””
rP—I:Rp—Rpr':J; (Tm_T)l—(l—ﬁ)rp{;'J )
(13)
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It must be noted that the above equations are valid
for both the melting and the freezing case since Tao’s
[27] solution, which was obtained for freezing in a
sphere, is also valid for melting if natural convection
effects are neglected. Previous studies have already
shown that natural convection is negligible for very
small spheres [29, 30].

METHOD OF SOLUTION

Nondimensionalization

The governing equations developed are first non-
dimensionalized using the following dimensionless
variables

¥ X u
rl:Rid’ X1=m, u]=Z (14)
_ (T_ Tw) )
“T.=T) for constant wall temperature (15a)
(Tm - T)
§=-———"_ forconstant wall heat flux. 15b
(waRd/kh) ’ ( )

The non-dimensional velocity profile retains an iden-
tical form as equation (1), and the energy equation
becomes

w 30 30 (f of\eo f &T
2 ox, 7 or? r. or )ér,  Pel dx?

Uy

a 2
—2Br . +8(r,x,0) (16)

ry

where
f = 1+ B8 {Pe(R,/Ry)*}"rT (17a)
avf m 2y mym—
3= Bem8™{ Pe(R,/Ry)*} " (17b)
t
2R
Pep =~ tm (17¢)
&
2R
Pe, = -m, (17d)
&y
For constant wall temperature
Br’ = Brinkm ber == B ()
¥’ = Brinkmann number = H(T. —T0)
k, R} r
8 =3c(1—0) 25 — P 19
R T,
rp, ==
kR [ For dx, |'?
[1 -6 Szeb’rkbRSJ; 1 _(1 —,S)I’p! (1 “"8} MZI-}—
(20a)
where

Stey, r = bulk ‘Stefan number’

_ GJT,—T,| _ sensible heat of slurry
"~ cL(py/py)  ‘latentheat’ ofslurry ’

(20b)
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For the constant wall heat flux

Br = Mn 21
"= 2Ry, @D

k. R r
8§, = —3c-24 ! 6
: kyRZ T—(1=B,)ry

B PP | )
r,,;-[l 6CSteb‘HkbR§L (= 0,_4‘;_

where

ColguRalkol
cLpyipy)

In the present problem, only the case where axial
conduction is negligible, i.e. when the bulk Peclet
number, Pe,, is greater than 100 [28], is considered.
For small Brinkmann numbers, the viscous dis-
sipation can be neglected, and the energy equation
reduces to

30 3’0 o0
Lol +<f+f)~—+§‘()u r1,0).

24

Stey, =

2 é8x 7ot \r  Or
(25a)
The boundary conditions, (3a)-(3e), become
O0=1 at ry=1 x>0,
forconstant wall temperature  (25b)
&0
3;;=1; at ri=1, x;, >0,
forconstant wall heat flux  (25¢)
;f% =0 atr,=0, x;,>0 (25d)
=1 at x, =0, r, <1,
for constant wall temperature  (25¢)
0=1 at x,=0, r <1,
for constant wall heat flux  (25f)
Fp=1 at x,=0. (25g)

Discretization of governing equations
An analytical solution for the governing equations
cannot be obtained because of the complexity of the
source term. A numerical solution using an implicit
finite difference method was therefore used. The
energy equation (equation (25a)) can be written in a
difference form as
e

_(2[{[1 fid
d
(1+4f >e (L+«!ffi
Uy Uy, By,

wy, i,
d 2 Ax
+ -4 iAr;)()i’j.‘ — oS oL
Uy, afl i

d of
— —Ar
u,y,; Or,

(26)
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where d = Ax,/(Ar,)?, n is the mesh point index in
the x,-direction, { the mesh point index in the r,-
direction =0, 1,2,..., 1

Equations (25a) and (26) are applicable for every
mesh point except the ones along the centerline.
Inspection of energy equation (25a) reveals that the
terms involving the division of 66/8r, by r, on the
right-hand side of the equation are indeterminate of
the form 0/0 at the center. By applying L Hospital’s
rule to (00/dr))/r, as r, approaches zero, the
differential and difference energy equations reduce to

u, 00 20 af a0
= =2 S
3 (’Vl f@rl + - (qu B, +8i(r,x,0) (27a)
( f() )01:+1 fO 9»1-0—1 - +2sn+]A§

ul 0 Uy o Uy

(27b)

where the boundary condition 8_,=10, and
(éf/or,) = 0 due to symmetry have been used. The

heat source, equations (18) and (22), is expressed in
the form

Sn+l _ :x'-kll(l {);’+\)’
for constant wall temperature  (28a)
Sn+l — :1]4-,]()'1—*— 1
for constant wall heat flux  (28b)
where
k Rd o
Co= 3¢~ — 29
T R T (=B @)

Equations (28) and (29) are applicable to any mar-
ching step in x; during which the particles have not
completely melted or frozen. For the marching step
during which complete phase change takes place, the
source term becomes

3
Toli Mg .
Sp == . forconstant wall temperature
= 2Ste, Ax, P
{30a)
";s i Uy
S = : for constant wall heat flux.
25’!&, Ax,’

(30b)

Finally, in the fully melted region, S;; = 0.

The system of different equations are now solved
simultancously at each marching step. Since the
coefficient matrix of the system is tridiagonal, it can
be solved by using the Thomas algorithm. However,
since the coefficient Cy,; is a function of r,, which is
an implicit function of temperature, it is solved in an
iterative fashion.

Verification of model and code
Table 1 summarizes the comparison between ana-
Iytical solutions and the present numerical solutions
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Table 1. Comparison of analytical and numerical mean Nusselt numbers

Analytical

solutions® Present work
X, Oom Nuy, Bom Nu,’ Nu,* Nu,?
0.001 0.9618 19.50 0.9620 22.06 20.65 19.37
0.01 0.8362 8.943 0.8364 9.254 9.180 8.932
0.04 0.6280 5.815 0.6282 5.906 5.926 5.811
0.10 0.3953 4.641 0.3954 4.685 4.718 4.639
0.20 0.1897 4.156 0.1898 4.184 4.220 4.154
0.40 0.04393 3.906 0.04401 3.929 3.965 3.904

“From ref. [34].

*From equation (32), wall temperature gradient evaluated from second-degree

polynomial.

‘From equation (32), wall temperature gradient evaluated from first-degree

polynomial.
¢From equation (34).

for pure fluid flow. The mean Nusselt number in the
last column in Table 1 is calculated from [28]

1 1

Num = TXIIHE

(31
which is applicable to single phase flow without a heat
source only. The numerical Nusselt number based on
a first degree polynomial appears to be more accurate
at small x, but less accurate at large x, compared to
a second degree polynomial. All the Nusselt numbers
for slurry flow with phase change were obtained based
on a first degree polynomial approximation.

Figures 3-5 show the comparison between the mean
Nusselt numbers obtained from the present numerical
method for a slurry flow without phase change and
the experimental results [11]. The relatively higher
experimental values may be caused in part by the
viscosity variation since the difference between the
wall and average fluid temperature was relatively
large. To account for such effects, the correction

factor, (py/p,)""*, from ref. [31] was initially used.
Introduction of the correction factor to the numerical
results brings the mean Nusselt numbers in Fig. 3 to
within 6% for ¢=0.046 and within 12% for
¢ =0.088, and brings the results in Fig. 4 to within
9%. Unfortunately however, this adjustment creates
even larger discrepancies for results in Fig. 5, and
further explanation is obviously required.

Two features of the experimental results suggest a
possible explanation. First, the flow shown in Fig. 5
is well into the thermally fully developed region while
those in Figs. 3 and 4 are still in the developing stage.
Secondly, the influence of concentration appears to
be substantially weakened for the results in Fig. 5.
These observations suggest that the radial migration
effects may be significant since the particle/duct
diameter ratio is not sufficiently small. The effects
are more appreciable when the slurry flows further
downstream and the particles more further away from
the wall. The extent of the effects cannot be evaluated

10
A
A
A

81 fo) A A
=E T —— _Q) fo) A A
2 T t——— . "% o A
o e e T ———_ 9 __ oo
& —— - [ .
S 67 ———— T ————
> ————
z .
=
tay
(2]
(24 4..
2 —— — Pure fluid flow
z —.-— Particle concent. = .046, Present work
E ——<-— Particle concent. = .088, Present work

2+ [o) Particle concent. = .046, experimental

A Particle concent. = .088, experimental
[+]
.030 .035 .040 .045 .050 .055 .060 .065 .070

DIMENSIONLESS AXIAL DISTANCE X/RRePr

Fi1G. 3. Comparison of numerical results and experimental results of Ahuja [11] for heat transfer in a circular
duct. Suspension: 100 um polystyrene spheres in 5.2% aqueous NaCl solution. Duct diameter = 0.002.m.
Duct length = 0.4 m. Constant wall temperature.
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>
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o
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F1G. 4. Comparison between numerical results and experimental results of Ahuja [11] for heat transfer in
a circular duct. Suspension: 100 um polystyrene spheres in 20% wt. aqueous glycerine solution. Duct
diameter = 0.002 m, Duct length = 0.4 m. Constant wall temperature.

quantitatively because the Reynolds numbers are out-
side the range of the model developed in ref. [20].
Further investigation is needed in this area.

Another possible reason for the discrepancy lies in
the definition of a ‘dilute’ suspension. The theoretical
models used in deriving the above correlation consider
a dilute suspension where effects of particle-to-particle
collisions are neglected. Since the concentration limit
for dilute suspensions is uncertain, it is quite possible
that the errors are due to the assumption that the
suspensions studied in ref. [11] were dilute.

In order to verify numerical convergence of the
solution, a number of test runs have been performed

for different grid sizes. For the constant wall tem-
perature boundary condition, it was found that the
solutions converged for r, and x, step sizes of 0.025
and 0.00005, respectively. On the other hand, the solu-
tion for the constant wall heat flux boundary con-
dition required much finer grids with r, and x, of
0.00625 and 0.00005, respectively. These were the final
grid sizes used to obtain the results for the two cases.

RESULTS AND DISCUSSION

The parameters for the present problem are the
volumetric particle concentration, the bulk ‘Stefan

8
7+
E N AA
26 - Sy
o [*¥e] A AT e
ud . — o A
o 5 L s Qo T
S OO BT o ,
=z e e e
— 41 T e e e e
Ll
L td
w
2371 e Pure fluld flow
= — -~ Particle concent. = .046, Present work
u2r —— - — Particle concent. = 088, Present work
o) Particle concent. = 0486, experimental
1+ A Particle concent. = .088, experimental
o]
. 100 .125 . 150 .175 .200 . 225 .250 .275 . 300

DIMENSIONLESS AXIAL DISTANCE X/RRePr

FiG. 5. Comparison between numerical results and experimental results of Ahuja [11] for heat transfer of
suspension in a circular duct. Suspension: 50 gm polystyrene spheres in 5.2% aqueous NaCl solution.
Duct diameter = 0.001 m. Duct length = 0.55 m. Constant wall temperature.
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number’, the duct/particle radius ratio, the particle/
fluid thermal conductivity ratio, and a modified
Peclet number Pe(R,/R,)’. The effects of these par-
ameters were studied in the ranges of parameter values
typical for low temperature applications (< 100°C):
0.1 <e<0.25 50<RyR, <400, 0.25 < Pe(R,/
R <40, 025<ky/k;<4.0, and 0.25 < Ste, <
2.0 for the constant temperature case and 1.0 <
Ste, < 5.0 for the constant heat flux case.

The solutions are presented in terms of mean Nus-
selt number (for constant wall temperature), local
Nusselt number (for constant wall heat flux), bulk
mean temperature, and ‘interface’ location. These
four sets of information are necessary for thermal
design as demonstrated by the sample calculations in
the Appendix. The mean Nusselt number is defined
as

_ 2h,Rs _ 2Ruq.,

Nt = T kAT,

Inf,, 1 (% o0 dx
Oom—1 x, Jo _ﬁrl o i

where ¢, is the mean wall heat flux and AT, the
log mean temperature difference. The local Nusselt
number is defined as

= 4f.

(32)

N 2Ryh, 2 13

Tk Tes, Y
The graphs of “interface’ location, which are expressed
in terms of dimensionless distance z, from the duct
wall to the ‘interface’, show the progress of the phase
change process in the axial direction. The approximate
proportion of particles already melted or frozen at
any cross section may be obtained from the knowledge
of ‘interface’ location since this melted fraction is a
function of the distance of the interface from the wall

50

which is =~ {rR}—n(Ry—2)*}/(nR3) = (2—2z))z,,
where z, = z/R,.

Constant wall temperature

The most dominant parameters for the problem are
the bulk ‘Stefan number’ and the concentration. Their
effects are shown in Figs. 6 and 7. The Nusselt number
can be considerably improved by reducing the bulk
‘Stefan number’, which corresponds to increasing the
‘latent heat” of the slurry. The effect of increasing
the concentration is twofold : it decreases the ‘Stefan
number’ and raises the conductivity enhancement fac-
tor. Based on a perturbation solution for heat transfer
from a flat plate to a phase change slurry, Chen
and Chen [10} had showed that the local Nusselt
number for low Sre, is proportional to Stey '?
x (1 —Ste,/6— ---). This is also found to be approxi-
mately true in this case for Ste, < 0.5. The effects
of the Pe(R,/Ry)* product and the radius ratio are
relatively weak. For example, at x; = 0.01, the change
in the mean Nusselt number is less than 6% when
Pe{R,/R,)* varies from 1 to 4, and less than 5% when
the radius ratio varies from 50 to 200. The effect is
greater at a lower x, and smaller at a higher x,. For
a radius ratio in the 200400 range, the change in
mean Nusselt number is negligibly small. It suggests
that for very large radius ratios, the heat transfer in
the slurry is controlled by diffusion in the flow field
rather than diffusion in the particles. Therefore, we
may conclude that variation of particle size due to
the manufacturing process is not very critical to the
thermal characteristics of phase change slurries. The
effect of the conductivity ratio is essentially negligible
in the range of the present study and may be com-
pletely dropped from the parameter group.

In general, the mean Nusselt number for the phase
change slurry flow is about 1.5-2.5 times higher than

\\ N
40 Q N
30t

20 $_

MEAN NUSSELT NUMBER

0
10~3

DIMENSIONLESS AXIAL DISTANCE, X/RRePr

FiG. 6. Effect of concentration on mean Nusselt number: constant wall temperature.

Pe(R,/Ry)? = 1.0, Ry/R, = 100, Ste, = 0.5.
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FiG. 7(b). Effect of Stefan number on local Nusselt number: constant wall temperature. ¢ = 0.15,
kofke= 4.0, Pei(R,/R;)> = 1.0, Ry/R, = 100.

that of the pure fluid flow (Fig. 7). In addition, in the
slurry system, the wall/fluid temperature difference is
maintained substantially higher than the single phase
flow as shown in Fig. 8. Therefore, a heat flux of about
2-4 times higher than that of the single phase flow
may be achieved by the phase change slurry system.
Sample calculations in the Appendix show the com-
parison in terms of dimensional quantities. Once all
the particles are completely melted, the effect of
enhanced thermal conductivity due to micro-
convective effects tends to quickly lower the bulk
mean temperature. This causes the mean Nusselt num-
bers to rise at the same period as can be seen at the
ends of the curves in Fig. 7.

Constant wall heat flux

The effects of parameters discussed earlier in this
section were found to be similar to the case of constant
wall temperature. Figure 10 shows that the local Nus-
selt number is about 1.5-4 times higher than the single
phase flow. Moreover, the bulk mean temperature rise
is effectively suppressed to about half of the single
phase flow. The combined effects can be utilized in
the forms of flow reduction, or more effective control
of the wall temperature as demonstrated by sample
calculations in the Appendix.

It is interesting to note that the local Nusselt num-
ber decreases until all the particles become completely
melted. After that it rises slightly and then remains
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F16. 8. Effect of Stefan number on bulk mean temperature : constant wall temperature. ¢ = 0.15, k,/k; = 4.0,
Pe(R,/Ry)? = 1.0, Ry/R, = 100.

constant. Such characteristics can be explained clearly
from examination of the temperature profile devel-
opment in Fig. 13 along with equation (33). During
the period before the phase change completion, the
profiles change such that the flat portion is shortened
(see curve of Ste, = 1.00, for example), therefore,
0, — 0., increases and Nu, decreases. After the com-
pletion, the profiles flatten, 6, —6,,, decreases, and
hence Nu, increases. The profiles finally become fully
developed, and 8, — 6,,, and Nu, remain constant.

Pressure drop in slurry flow

In laminar duct flow of Newtonian fluid, the press-
ure drop is a linear function of fluid viscosity. For
slurries which can be treated as Newtonian homo-
geneous fluids, the pressure drop may be calculated
from the same relationship [18]. At higher con-

centrations, however, slurry flow characteristics may
slightly deviate from the single phase flow [11]. Since
the presence of particles in a fluid results in higher
bulk viscosity than that of the suspending fluid, press-
ure loss in a slurry flow is greater than a single phase
flow under the same flow condition. The viscosity of
a slurry may be calculated from [32]

B (—c—116c) 25,
He

(34)

In the concentration range of 0.10-0.20, the bulk vis-
cosity is about 1.3-2.0 times higher than the sus-
pending fluid. Therefore, the pressure drop is expected
to be greater by the same proportion. This pressure
loss penalty is however minor compared to the mag-
nitude of the heat transfer enhancement shown in the
Appendix.
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F1G. 9. Effect of Stefan number on interface location: constant wall temperature. ¢ = 0.15, k /k; = 4.0,
PedR,/R;)” = 1.0, Ry/R, = 100.
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SUMMARY

The governing equations for heat transfer of micro-
encapsulated phase change material slurry flow in
circular ducts have been formulated. Heat generation
(or absorption) due to phase change in the particles
was included in the energy equation as a heat source.
The enhancement of thermal conductivity due to the
particle/fluid interactions was also taken into con-
sideration. The dimensionless parameters are the bulk
‘Stefan number’, the particle concentration, a modi-
fied Peclet number, the particle-to-tube radius ratio
and the conductivity ratio.

The bulk ‘Stefan number’ and the concentration
are the most dominant parameters. The effect of
Pr{R,/R,)? is relatively weak. The effect of the radius
ratio is also weak but noticeable in the range of 50—
200 and negligible for the ratio in the range of 200-
400. It suggests that the variation of the particle size
due to manufacturing processes is not critical to the
thermal performance of the phase change slurry
system.

The results show that the slurry system can effec-
tively enhance the heat transfer coefficient and sustain
the fluid temperature. Such improvements may be
utilized in the form of increased heat transfer rate,
flow reduction, or more effective control of the wall
temperature.
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APPENDIX: SAMPLE CALCULATIONS

The calculations described below demonstrate the appli-
cation of the present results and compares the performance
of the phase change slurry system (15% concentration of 500
um microcapsules) with the single phase flow under specified
conditions. The following materials are used in the cal-
culations : fluid, Fluorinert FC-77, property values as given
by 3M Corp.; phase change material, Na,HPO,-12H,0,
property values taken from ref. [33].

Constant wall temperature

Given a tube with length L = 0.5 m and diameter D = 5
mm. It is used to remove heat at a rate of ¢, = 0.191 W
c¢m ™2 Calculate and compare flow rate required for the
slurry flow and the single phase flow. Assume an inlet
temperature and a wall temperature of 20 and 32.5°C,
respectively.

Constant wall heat flux

Given a tube with length L = 0.5 m and diameter D = 5
mm. It is used to remove heat which is generated at the rate
of g, = 0214 W cm™". Calculate and compare flow rate
required to maintain the wall temperature not higher than
45°C using the slurry and a single phase fluid. Assume
the fluid enters the heat transfer section at temperature
T,.=25C.

Solution

The solution technique for a slurry flow is completely
analogous to that used for similar problems with a single
phase fluid. Only the case for constant wall temperature will
be solved here.

Phase change slurry flow (constant wall temperature)

Before starting the actual calculations, evaluate the Stefan
number, 0.4,

Steps of calculations:

(1) Guess mean velocity u,,.
(2) Calculate Pe((R,/Ry)*; and Pe, = u,Djo, and x, =
2L{(D Pey).
(3) Read Nu, and T,, from graphs, Figs. 7 and 8, for
example.
(4) Calculate b, = Nu, k,/D
AT, = (AT, — AT,)/In (AT;o/AT,,).
(5) Calculate g. = h, AT),.
(6) Compare ¢, with g,, if ¢. = g¢,, then answer:
if g. > g, then reduce velocity and go to |
if g, < g,, then increase velocity and go to 1.

The calculation steps above yield the following results: vel-
ocity = 0.022 m s~ ', outlet temperature = 22.4°C.

The results of both the problems posed above are sum-
marized in Table Al.

Table Al. Summary of the comparisons

Heat flow Fluid flow AT
(Wem™?) rate (ms™') (°C)
(1) Constant wall temperature
Single phase 0.191 0.19 2.2¢
Slurry 0.191 0.022 2.4
Slurry 0.449 0.19 1.6
(2) Constant wall heat flux

Single phase 0.214 0.27 20°
Slurry 0.214 0.026 20
Slurry 0.214 0.27 5.4

“Fluid temperature rise, T,y — Tin.
b Tv\unul - Tf.in'
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CONVECTION THERMIQUE FORCEE DANS DES BOUES ENCAPSULEES ET A
CHANGEMENT DE PHASE: ECOULEMENT DANS DES CONDUITS CIRCULAIRES

Résumé—On présente les caractéristiques d'un écoulement boueux de matériau 4 changement de phase et
encapsulé. L'équation d’énergie est formulée en prenant en compte 'absorption de chaleur (ou la libération)
due au changement de phase et 'accroissement de conductivité induit par le mouvement des particules. La
source thermique ou la fonction source de chaleur dans I'équation de I’énergic est obtenue a partir des
solutions de solidification ou de fusion dans une sphere. La corrélation pour la conductivité effective de la
boue est basée sur des résultats analytiques et expérimentaux disponibles. Les parameétres actifs sont la
concentration en particules, un nombre global de Stefan, le rapport des rayons conduit/particule, le rapport
des conductivités particule/fluide et un nombre de Péclet modifié. Pour les applications a température
basse. on trouve que les paramctres dominants sont le nombre global de Stefan et la concentration. Les
solutions numériques montrent que les flux thermiques peuvent étre 2 4 4 fois plus grands que dans un
écoulement monophasique.

WARMEUBERGANG BEI ERZWUNGENER KONVEKTION IN EINEM GEMENGE AUS
MIKROGEKAPSELTEM SCHMELZBAREM MATERIAL: STROMUNG IN
KREISRUNDEN KANALEN

Zusammenfassung—In der vorliegenden Arbeit werden Ergebnisse fiir den Wirmeibergang in einem in
kreisrunden Kanalen stromendem Gemenge aus mikrogekapseltem schmelzbarem Material vorgestellt. Die
Energiegleichung wird formuliert, wobei sowohl die Absorption (oder Freigabe) von Wirme infolge des
Phasendnderungsvorgangs als auch die Erhéhung der Warmeleitfahigkeit infolge der Partikelbewegung
beriicksichtigt werden. Der funktionale Ansatz fiir die Wirmequellen oder die Wirmeerzeugung in der
Energiegleichung ergibt sich aus Losungen fiir Erstarrungs- oder Schmelzvorginge in einer Kugel.
Die Korrelationsgleichung fiir die effektive Wirmeleitfihigkeit im Gemenge wird aufgrund verfligbarer
analytischer und experimenteller Ergebnisse ermittelt. Die wichtigsten EinfluBgréBen sind die Partikel-
konzentration, die Stefan-Zahl des Gemenges, das Radienverhiltnis von Kanal und Partikeln, das
Verhiltnis der Wirmeleitfdhigkeiten von Partikeln und Fluid sowie eine modifizierte Peclet-Zahl. Bei
niedrigen Temperaturen dominieren die Einfliisse der Stefan-Zahl und der Konzentration. Die numerischen
Ergebnisse zeigen, daB die Warmestrome ungefédhr zwei- bis viermal gré8er sind als bei einer einphasigen
Stromung.

BBIHYXJEHHOKOHBEKTUBHBIN TEIUIOIIEPEHOC B CYCIIEH3UAAX MHUKPOKATICYJI,
COAEPXKAINIUX MATEPHUAJI C ®A30BbIM ITEPEXOJIOM: TEUEHHE B KAHAJIAX
KPYTJIOT'O CEYEHHA

Asnoramms—IIpHBOAATCA XapaKTEPUCTHKH TEIUIONEPEHOCA NIPH TEYCHHH CYCHEH3MH MHKPOKancy,
cOAepKAmMUX MaTepuas ¢ $pa30BbIM HEPEXOJOM, B KaHalaX KPYIJoro ce4eHus. Y paBHEHHE COXPaHEHHs
JHeprun (opMyJIHpYETCs ¢ Y4E€TOM KaK NOTJIOLIECHHS (BbLAC/ICHHS) Telma, 06YCIOBIEHHOTO IPOLECCOM
($ha30BOTO Mepexona, TaAK U € YYETOM YBEJIMYCHNA TEMJIONPOBONHOCTH, BHI3BAHHOI'O ABM)KCHHEM YACTHIL.
Ucrounuk Temna win GpyHKUMS TEIUIOBBLACIICHHS B YPABHEHHH COXPAaHEHHs SHEPrUH OMPEIEAeTCs U3
peLLUECHHA#H, ONKCHIBAIOIIMX 3aMepP3aHHe WM MasiieHue B chepe. Obobmaromee cooTHoIeHe 1S 3pdek-
THBHOH TEMIONPOBOAHOCTH CYCHIEH3MH TOJIYYEHO HA OCHOBE UMEIOILIMXCA AHAMTHYECKAX H IKCIEPHMEH-
TaJIbHBIX pe3yibTaToB. Hafineno, 4To onpeaensiommMH napaMeTpaMH SBIAIOTCS KOHUEHTPAUMS YacTHL,
o6beMHoe yncno CTedaHa, OTHOLIEHHE PAAMYCOB KdHANA M MACTHML, OTHOLICHHE TEILIONPOBOXHOCTH
4aCTHI ¥ XKMOKOCTH, a Takxe MoanduuupoBanunoe yucio Ilexne. O6HapyXeHO, YTO MPH HA3KUX TEMIe-
paTypax IOMHHHPYIOIIHMH apaMETPaMH ABJIAOTCH oObeMHOe yucio CredaHa n koHUeHTpauns. Yuc-
JICHHbIE PCIUCHHS MOKA3bIBAIOT, YTO B TAKMX CYCHEH3HOHHBIX CHCTEMAaX MOTYT OBITb JOCTHIHYTbI
TENJIOBBIE IOTOKH, 3HAYCHUS KOTOPBIX B 2—4 pa3a BBIlIE, YeM NPH 0AHODAIHOM TEHEHHH.
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